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Abstract. We study the effects of branching on linear polymers using a two-parameter 
position space renormalisation group. From the resulting phase diagram and the renormali- 
sation group flows we find a new higher-order critical point. We propose that this critical 
point describes a vulcanisation process in which both the linear polymer and its branches 
become part of an infinite branched polymer network. 

Linear polymers are formed when a large number of bifunctional monomers join to 
form a chain molecule. However, during the synthesis of linear polymers, branching 
sometimes occurs and leads to a polymer chain that is not perfectly linear (see figure 
1 ( a ) ) .  An example is industrial polyethylene which has many three-functional branch 
points (de Gennes 1979). It is expected that the presence of a few branches in an 
already existing linear polymer should not affect the asymptotic scaling properties of 
the polymer. On the other hand, if the branches become comparable in length to the 
original linear polymer (see figure 1( b ) ) ,  the asymptotic properties should be changed. 
In the following we develop a position space renormalisation group method to deter- 
mine the phase diagram for a linear polymer solution in the presence of branching. 

lo1 161 

Fipre 1. (a) Example of a linear polymer with short branches. (b )  Example of a linear 
polymer with branches that are comparable in length to the original linear polymer. 

The main result of our study is that when the length of the branches becomes 
comparable to that of the backbone chain, the polymer exhibits a new type of scaling 
behaviour different from that of both linear polymers and randomly branched polymers. 
We propose that this new higher-order critical point describes a vulcanisation process 

@ 1983 The Institute of Physics L665 



L666 Letter to the Editor 

in which both the backbone chain and its branches become part of an infinite branched 
polymer network. The properties of this new vulcanisation process are discussed below. 

The application of position-space renormalisation group methods to the study of 
crossover phenomena in polymers has been the subject of recent reviews (Family 1983, 
Stanley et a1 1982). We model a linear polymer in the dilute limit by a self-avoiding 
random walk on a lattice. To obtain a branched polymer, we enumerate all the possible 
branches that can be added to an already existing linear polymer. We use the approach 
of Family (1980) (see also Family (1983) and references therein) and model the system 
in a grand canonical ensemble and associate a fugacity K with a monomer in the 
backbone chain and a fugacity G with a monomer in the branches. To obtain explicit 
recursion relations for K and G, we discuss the model on a square lattice and partition 
it into cells of linear dimension b = 2. We assume that all polymer configurations which 
begin at the lower left corner and extend to the top of the cell are renormalised to a 
single backbone bond of weight K’ in the vertical direction; we also use the same rule 
in the horizontal direction. Examples of configurations that contribute to K’ are shown 
in figure 2(a). The resulting recursion relation is 

K’ = K + K ’( 2K + 2 G + K ’ + 8KG + 6G2 + 4K 2G + 1 6KG2 + 11 G3 + 6K ’G2 

+ 18KG3 + 12G4 + 4K2G3 + 10KG4+ 6G5 + K2G4+ 2KG5 + G6). (1)  

Note that (1)  reduces to the usual self-avoiding walk (linear polymer) recursion relation 
when G = 0. For G = K, (1)  represents a branched polymer which has been constructed 
by adding branches to an already existing linear polymer. 

16) 

Figure 2. Examples of polymer configurations on a square lattice on a b = 2 cell. Weights 
K and G are associated with monomers (bonds) in the backbone linear chain and branches 
respectively. The configurations in ( a )  span vertically and contribute to K ‘ .  The diagrams 
in ( b )  span horizontally and vertically and contribute to both the K‘ and G’ recursion 
relations. 

In order to determine the recursion relation for G‘ it is convenient to introduce 
the enhancementparameterg defined by the relation g = G / K  and obtain the recursion 
relation for g’ directly. The recursion relation for g ’  must satisfy the requirements 
that g > 1 ( g  < 1) favours (inhibits) the addition of branch monomers; the limit g = 1 
corresponds to the case where monomers in the backbone linear chain and the branches 
have equal weight. These requirements imply that g’ can be written as the sum of all 
branched configurations which span the cell in both the vertical and horizontal directions 
divided by the sum of the contributions from the same configurations with g = 1.  
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Examples of configurations contributing to g' are shown in figure 2( b). The resulting 
recursion relation for g' for a b = 2 cell on the square lattice is 

g' = G'/ K' = N /  D, 
N =  3KG+2G2+2K2G+10KG2+7G3+5KZG2+ 16KG3+ 11G4 

+4K2G3+ 10KG4+ 6G5 + K 'G4+ 2KG5 + G6, 
D = 5K5+ 19K3+32K4+20K5+4K6. (2) 

Equations ( 1 )  and (2) constitute a coupled set of recursion relations for K' and 
G' (or g'). The resulting phase diagram and the renormalisation group flows are 
shown in figure 3. Although this phase diagram was obtained for a b = 2 cell on the 
square lattice its main features are expected to be independent of b and applicable to 
three dimensions as well. 

tanh i 
Figure 3. Resulting phase diagram and the renormalisation group flows obtained from the 
coupled recursion relations (1) and (2). 

In addition to the three trivial fixed points at (K*, G*) = (0, O ) ,  (00 ,O)  and (CO, CO), 

there are four non-trivial unstable fixed points as shown by the full circles in figure 3. 
The fixed points at K* = 0.4656, G* = 0 and K* = 0, G* = 0.3215 correspond to the 
limits of a linear polymer (self-avoiding walk) and randomly branched polymer (lattice 
animal) respectively. Note that for G < K, the flow on the phase boundary is toward 
the linear polymer fixed point. This direction of flow implies that along the phase 
boundary the asymptotic critical behaviour is that of a linear polymer even though 
the polymer may have branches present. 

For G = K the length of the branches becomes comparable to the backbone linear 
chain and a new universality class develops as evidenced by the fixed point at K * = G* = 
0.2603. This new fixed point describes a vulcanisation process in which both the 
backbone chain and the branches simultaneously become critical. Linearisation of ( 1) 
and (2) near this fixed point and the calculation of the largest eigenvalue of the 
linearised renormalisation group transformation matrix (details of this procedure are 
discussed in Family (1983), Stanley e? a1 (1982)) lead to a fractal dimension d, = 1.8 
associated with this fixed point. (For comparison (1) and (2) yield d, = 1.4 and d, = 2.0 
for the self-avoiding walk and lattice animal fixed points respectively.) Note that as 
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K decreases from K* = 0.2603 along the phase boundary, the length of the backbone 
chain becomes finite and the branches grow in size in order to keep the polymer 
network connected. Hence the flow is from the vulcanisation fixed point toward the 
randomly branched fixed point on the G axis. 

In addition to the three fixed points discussed above, there is another fixed point 
at K* = 00, G* = 0.1 123 which has physical significance. In the limit K +CO linear 
polymers densely pack the lattice such that every lattice site is occupied by a monomer 
belonging to the polymer. If there were more than one chain present, the limit would 
describe a linear polymer melt. Hence in this limit the number of branch monomers 
required to form a vulcanised network is small and G*c< 1. 

The critical lines divide the phase diagram into three regions: region I corresponds 
to the sol phase with polymers of finite size, region I1 corresponds to an infinite linear 
polymer with finite branches, region I11 corresponds to the gel phase where an infinite 
polymer network is present. Note that the vulcanisation fixed point is a higher-order 
critical point at which the correlation length of both the linear backbone and its 
branches become infinite simultaneously. 

In the usual model of vulcanisation of linear chains (Flory 1953, de Gennes 1979), 
linear polymers in a melt are randomly cross-linked to form an infinite molecule. The 
present model of vulcanisation is more general, since two monomers of different chains 
can cross-link regardless of their distance apart. Hence in contrast to the usual model 
in which vulcanisation can occur in the melt only, in the present model it can also 
occur in the dilute and semi-dilute regions. An important aspect of our model is that 
whereas the critical behaviour for vulcanisation in the melt is of a mean-field type (de 
Gennes 1977), vulcanisation in the dilute and semi-dilute regimes exhibits non-mean- 
field behaviour (Daoud 1979, Coniglio and Daoud 1979). The present model comple- 
ments the model of vulcanisation investigated by Coniglio and Daoud (1979) in which 
each cross-linking bond occurs with probability p and is absent with probability 1 - p .  
Hence in the limit in which no linear backbone chain is present, Coniglio and Daoud 
obtain percolation critical behaviour rather than the critical behaviour of randomly 
branched polymers (lattice animals) as obtained in the present work. 
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